
Solutions Exam Signals and Systems
21 january 2016

Problem 1: signals and spectra

(a) The first signal has amplitude 2 and makes three oscillations in two 2 seconds, so its frequency is 1.5Hz.
It is clearly a cosine which is reflected in the time-axis, so the phase is π. We conclude x(t) = 2 cos(3πt+
π).

The second signal is a cosine with amplitude 1, and frequency 6Hz, so y(t) = cos(12πt).

Careful inspection of the third plot shows that it is an AM signal that is constructed from the other two
plots: z(t) = x(t)y(t) = 2 cos(3πt + π) cos(12πt). This can be rewritten (formula 9 of the formula
sheet) as z(t) = cos(9πt− π) + cos(15πt+ π) = cos(9πt+ π) + cos(15πt+ π).

(b) We use the inverse Euler formula cos(θ) = ejθ+e−jθ

2
.

x(t) = −2 cos(3πt) = 2 cos(3πt+ π) = ejπejπ3t + ejπe−jπ3t

y(t) = sin(6πt+ π/2) = cos(6πt) =
1

2
ejπ6t +

1

2
e−jπ6t

z(t) = x(t)y(t) =
ejπ

2
e−jπ9t +

ejπ

2
ejπ9t +

ejπ

2
e−jπ3t +

ejπ

2
ejπ3t

(c) The spectra of the signals are shown in the following three plots:
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(d) First, we need to rewrite x(t) as a sum of terms:

x(t) =
1

2
cos(2π70t) +

1

2
cos(2π130t) + cos(2π100t− 50 sin(2πt))

The first two terms are simply cosines with the frequencies 70 and 130Hz. The last term is a Frequency
Modulated (FM) signal. Its instantaneous frequency (in Hz) is the derivative of the angle function divided
by 2π i.e. fi = 100− 50 cos(2πt). Now, we can plot the spectrogram:
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Problem 2: Fourier analysis

(a) According to the Fourier synthesis formula (using T0 = 2):

x(t) =
∞∑

k=−∞
ake

jπkt = 3e−j3πt + 2e−jπ/2e−jπt + 2ejπ/2ejπt + 3ej3πt

= 4 cos(2π0.5t+ π/2) + 6 cos(2π1.5t)

So, DC = 0, A = 4, f0 = 0.5, φ0 = π/2, B = 6, f1 = 1.5, and φ1 = 0.

(b) Again, we use the Fourier synthesis formula (for all t):

g(t) =
∞∑

k=−∞
bke

jπkt/T0 = f(t− d) =
∞∑

k=−∞
ake

jπk(t−d)/T0 =
∞∑

k=−∞
(ak · e−jπkd/T0)ejπkt/T0

Hence, we find bk = ak · e−jπkd/T0 .

(c) According to the Fourier analysis formula (with T0 = 2) we find for the DC-term (i.e. k = 0):

2a0 =
∫ 1

0
t dt+

∫ 2

1
1 dt =

[
t2/2

]1
0
+ [t]21 =

(
1

2
− 0 + 2− 1

)
= 1

1

2

So, a0 = 3/4. For other k we find (where α = −jπk):

2ak =
∫ 1

0
t · e−j(2π/2)kt dt+

∫ 2

1
1 · e−j(2π/2)kt dt =

∫ 1

0
t · eαt dt+

∫ 2

1
eαt dt

Using the standard integrals from the formula sheet this reduces to:

2ak =
[
αt− 1

α2
eαt
]1
0
+

[
eαt

α

]2
1

=
(α− 1)eα + 1

α2
+
e2α − eα

α
=
αeα − eα + 1 + αe2α − αeα

α2

Now, we use e2α = 1, and eα = (−1)k:

2ak =
1− eα + αe2α

α2
=

1− (−1)k + α

α2

For even k this yields 2ak = α
α2 = 1

α
= 1
−jπk , so ak = 1

−j2πk = j
2πk

.

For odd k this yields 2ak = 2+α
α2 = 2

α2 +
1
α
= −2

π2k2
+ j

πk
, so ak = j

2πk
− 1

π2k2
.

(d) The key insight is that z(t) is the same as x(t)− y(t) shifted by half a period (i.e. 1 second). So, we can
use the linearity of the Fourier integral and the theorem that was proved in part (b). So, for the Fourier
coefficients ck of z(t) we find: ck = (ak − bk) · e−jπk. This yields

ck =


3
4
− 1

4
= 1

2
for k = 0

0 for even k 6= 0
( j
2πk
− 1

2jπk
) · (−1)k = 1

jπk
for odd k 6= 0

(e) First we rewrite the signal as z(t) = 1 + cos(2π75t) + cos(2π125t). Now we can find the fundamental
frequency f0 = gcd(75, 125) = 25Hz. So, the cases are k = 0, k = ±3 and k = ±5. Both components
have phase angle 0, so we find:

ak =

{
1 for k = 0, k = ±3, k ± 5
0 for all other k



Problem 3: LTI-systems

(a) First we consider the system y0[n] = x[n − 2] + x[2 − n]. Since y0[0] = x[−2] + x[2], it is clearly not
causal. It is also not time invariant, since y1[n−d] = x[n−d−2]+x[2−n+d] 6= x[n−d−2]+x[2−n−d].
The system is linear, which is easy to prove:

(a · x+ b · y)[n− 2] + (a · x+ b · y)[2− n]
= a · x[n− 2] + b · y[n− 2] + a · x[2− n] + b · y[2− n]
= a(x[n− 2] + x[2− n]) + b(y[n− 2] + y[2− n])

The system y1[n] = x[n − 2] − 8x[n − 2] is a standard FIR filter. Hence, it is causal, linear, and time
invariant.

(b) Clearly, x[n] = u[n] − u[n − 4] = δ[n] + δ[n − 1] + δ[n − 2] + δ[n − 4] = [1, 1, 1, 1]. The output is
obtained by convolving this with h = [1, 2, 3, 1], so we find

y[n] = [1, 1, 1, 1] ∗ [1, 2, 3, 1] = [1, 3, 6, 7, 6, 4, 1]

= δ[n] + 3δ[n− 1] + 6δ[n− 2] + 7δ[n− 3] + 6δ[n− 4] + 4δ[n− 5] + δ[n− 6]

(c) Let us assume that the system is a FIR. This means that there is a kernel h for which |h| = |y|− |x|+1 =
7− 5 + 1 = 3. So, let h = [a, b, c] and compute the convolution h ∗ x:

a b c
3 1 4 1 5

3a 3b 3c
a b c

4a 4b 4c
a b c

5a 5b 5c
6 2 5 1 6 −1 −5

From the first column, we conclude a = 2. From the last column, we conclude c = −1. Next,
we use 3b + a = 2, to deduce that b = 0. Checking yields 3c + b + 4a = −3 + 0 + 8 = 5,
c+ 4b+ a = −− 1 + 0 + 2 = 1, 4c+ b+ 5a = −4 + 0 + 10 = 6, and c+ 5b = −1 + 0 = −1. So, we
found h = [2, 0,−1] and the filter is indeed a FIR filter.

(d) Just like in part (c), assume that h = [a, b, c] and compute the convolution:
a b c
1 2 3 2 1
a b c

2a 2b 2c
3a 3b 3c

2a 2b 2c
a b c

−1 0 2 2 0 0 −1
Clearly, from the first and the last column, we conclude a = c = −1. From b + 2a = 0, we conclude
b = 2. However, this contradicts c+ 2b+ 3a = −1 + 4− 3 = 0 6= 2. Hence, the filter is not a FIR filter.

(e) We can obtain the unit pulse δ[n] by adding the first two given inputs, and subtract 3 times the 3rd input
shifted by 2 samples. So, we can get the output of the unit pulse as follows: y[n] = [12, 10, 10, 24, 10] +
[−8,−8, 2, 6, 2]− 3[0, 0, 4, 10, 4] = [4, 2, 0, 0, 0]
We conclude h = [4, 2] = 4δ[n] + 2δ[n− 1].



Problem 4: frequency responses and z-transforms

(a) For the first order difference, we have h = [1,−1]. Hence, H(z) = 1− z−1 and H(ejω̂) = 1− e−jω̂.

(b) We rewrite the frequency response in normal-form using Euler’s formula:

H0(e
jω̂) = e−jω̂(3− 2 cos ω̂) = e−jω̂(3− ejω̂ − e−jω̂) = 3e−jω̂ − 1− e−j2ω̂ = −1 + 3e−jω̂ − e−j2ω̂

So, we find h = [−1, 3,−1] and y[n] = −x[n] + 3x[n − 1] − x[n − 2]. Since 3 − 2 cos ω̂ > 0, no
frequencies are completely nulled by this system.

(c) For the DC-component, we find the gain 3 − 2 cos 0 = 1, so the DC-component is not changed. For the
frequency ω̂ = π/3 we find the gain 3− 2 cos (π/3) = 2 and the phase change −π/3. For the frequency
ω̂ = π/4 we find the gain 3− 2 cos (π/4) = 3−

√
2 and the phase change −π/4. So, we find the output

y[n] = 5 + 6 cos
(
(n−1)π

3

)
+ (6− 2

√
2) sin

(
(n−1)π

4

)
= 5 + 6 cos

(
(n−1)π

3

)
+ (6− 2

√
2) cos

(
(n−3)π

4

)
.

(d) A DC-component is removed by the first order difference. We can remove a frequency ω̂ by a system
with system function (1− ejω̂z−1)(1− e−jω̂z−1) = 1− 2 cos(ω̂)z−1 + z−2. A first order difference will
remove the DC-term. So, the filter asked for has the impulse response [1,−1] ∗ [1,−2 cos(5π/6), 1] =
[1,−1] ∗ [1,

√
3, 1] = [1,

√
3− 1, 1−

√
3,−1]. Its difference equation and system function are:

y1[n] = x[n] + (
√
3− 1)x[n− 1] + (1−

√
3)x[n− 2]− x[n− 3]

H1(z) = 1 + (
√
3− 1)z−1 + (1−

√
3)z−2 − z−3

(e) Clearly, F2 is a 12 points-averager. Since 12 is 4 × 3 and 2 × 6, this means that the cosine terms are
completely nulled. The DC-component remains, so the output is simply y[n] = 5.


