Solutions Exam Signals and Systems 21 january 2016

Problem 1: signals and spectra

(a) The first signal has amplitude 2 and makes three oscillations in two 2 seconds, so its frequency is 1.5 Hz . It is clearly a cosine which is reflected in the time-axis, so the phase is π. We conclude $x(t)=2 \cos (3 \pi t+$ π).
The second signal is a cosine with amplitude 1 , and frequency 6 Hz , so $y(t)=\cos (12 \pi t)$.
Careful inspection of the third plot shows that it is an AM signal that is constructed from the other two plots: $z(t)=x(t) y(t)=2 \cos (3 \pi t+\pi) \cos (12 \pi t)$. This can be rewritten (formula 9 of the formula sheet) as $z(t)=\cos (9 \pi t-\pi)+\cos (15 \pi t+\pi)=\cos (9 \pi t+\pi)+\cos (15 \pi t+\pi)$.
(b) We use the inverse Euler formula $\cos (\theta)=\frac{e^{j \theta}+e^{-j \theta}}{2}$.

$$
\begin{aligned}
& x(t)=-2 \cos (3 \pi t)=2 \cos (3 \pi t+\pi)=e^{j \pi} e^{j \pi 3 t}+e^{j \pi} e^{-j \pi 3 t} \\
& y(t)=\sin (6 \pi t+\pi / 2)=\cos (6 \pi t)=\frac{1}{2} e^{j \pi 6 t}+\frac{1}{2} e^{-j \pi 6 t} \\
& z(t)=x(t) y(t)=\frac{e^{j \pi}}{2} e^{-j \pi 9 t}+\frac{e^{j \pi}}{2} e^{j \pi 9 t}+\frac{e^{j \pi}}{2} e^{-j \pi 3 t}+\frac{e^{j \pi}}{2} e^{j \pi 3 t}
\end{aligned}
$$

(c) The spectra of the signals are shown in the following three plots:

(d) First, we need to rewrite $x(t)$ as a sum of terms:

$$
x(t)=\frac{1}{2} \cos (2 \pi 70 t)+\frac{1}{2} \cos (2 \pi 130 t)+\cos (2 \pi 100 t-50 \sin (2 \pi t))
$$

The first two terms are simply cosines with the frequencies 70 and 130 Hz . The last term is a Frequency Modulated (FM) signal. Its instantaneous frequency (in Hz) is the derivative of the angle function divided by 2π i.e. $f_{i}=100-50 \cos (2 \pi t)$. Now, we can plot the spectrogram:

Problem 2: Fourier analysis

(a) According to the Fourier synthesis formula (using $T_{0}=2$):

$$
\begin{aligned}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j \pi k t}=3 e^{-j 3 \pi t}+2 e^{-j \pi / 2} e^{-j \pi t}+2 e^{j \pi / 2} e^{j \pi t}+3 e^{j 3 \pi t} \\
& =4 \cos (2 \pi 0.5 t+\pi / 2)+6 \cos (2 \pi 1.5 t)
\end{aligned}
$$

So, $D C=0, A=4, f_{0}=0.5, \phi_{0}=\pi / 2, B=6, f_{1}=1.5$, and $\phi_{1}=0$.
(b) Again, we use the Fourier synthesis formula (for all t):

$$
g(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j \pi k t / T_{0}}=f(t-d)=\sum_{k=-\infty}^{\infty} a_{k} e^{j \pi k(t-d) / T_{0}}=\sum_{k=-\infty}^{\infty}\left(a_{k} \cdot e^{-j \pi k d / T_{0}}\right) e^{j \pi k t / T_{0}}
$$

Hence, we find $b_{k}=a_{k} \cdot e^{-j \pi k d / T_{0}}$.
(c) According to the Fourier analysis formula (with $T_{0}=2$) we find for the DC-term (i.e. $k=0$):

$$
2 a_{0}=\int_{0}^{1} t d t+\int_{1}^{2} 1 d t=\left[t^{2} / 2\right]_{0}^{1}+[t]_{1}^{2}=\left(\frac{1}{2}-0+2-1\right)=1 \frac{1}{2}
$$

So, $a_{0}=3 / 4$. For other k we find (where $\alpha=-j \pi k$):

$$
2 a_{k}=\int_{0}^{1} t \cdot e^{-j(2 \pi / 2) k t} d t+\int_{1}^{2} 1 \cdot e^{-j(2 \pi / 2) k t} d t=\int_{0}^{1} t \cdot e^{\alpha t} d t+\int_{1}^{2} e^{\alpha t} d t
$$

Using the standard integrals from the formula sheet this reduces to:

$$
2 a_{k}=\left[\frac{\alpha t-1}{\alpha^{2}} e^{\alpha t}\right]_{0}^{1}+\left[\frac{e^{\alpha t}}{\alpha}\right]_{1}^{2}=\frac{(\alpha-1) e^{\alpha}+1}{\alpha^{2}}+\frac{e^{2 \alpha}-e^{\alpha}}{\alpha}=\frac{\alpha e^{\alpha}-e^{\alpha}+1+\alpha e^{2 \alpha}-\alpha e^{\alpha}}{\alpha^{2}}
$$

Now, we use $e^{2 \alpha}=1$, and $e^{\alpha}=(-1)^{k}$:

$$
2 a_{k}=\frac{1-e^{\alpha}+\alpha e^{2 \alpha}}{\alpha^{2}}=\frac{1-(-1)^{k}+\alpha}{\alpha^{2}}
$$

For even k this yields $2 a_{k}=\frac{\alpha}{\alpha^{2}}=\frac{1}{\alpha}=\frac{1}{-j \pi k}$, so $a_{k}=\frac{1}{-j 2 \pi k}=\frac{j}{2 \pi k}$.
For odd k this yields $2 a_{k}=\frac{2+\alpha}{\alpha^{2}}=\frac{2}{\alpha^{2}}+\frac{1}{\alpha}=\frac{-2}{\pi^{2} k^{2}}+\frac{j}{\pi k}$, so $a_{k}=\frac{j}{2 \pi k}-\frac{1}{\pi^{2} k^{2}}$.
(d) The key insight is that $z(t)$ is the same as $x(t)-y(t)$ shifted by half a period (i.e. 1 second). So, we can use the linearity of the Fourier integral and the theorem that was proved in part (b). So, for the Fourier coefficients c_{k} of $z(t)$ we find: $c_{k}=\left(a_{k}-b_{k}\right) \cdot e^{-j \pi k}$. This yields

$$
c_{k}= \begin{cases}\frac{3}{4}-\frac{1}{4}=\frac{1}{2} & \text { for } k=0 \\ 0 & \text { for even } k \neq 0 \\ \left(\frac{j}{2 \pi k}-\frac{1}{2 j \pi k}\right) \cdot(-1)^{k}=\frac{1}{j \pi k} & \text { for odd } k \neq 0\end{cases}
$$

(e) First we rewrite the signal as $z(t)=1+\cos (2 \pi 75 t)+\cos (2 \pi 125 t)$. Now we can find the fundamental frequency $f_{0}=\operatorname{gcd}(75,125)=25 \mathrm{~Hz}$. So, the cases are $k=0, k= \pm 3$ and $k= \pm 5$. Both components have phase angle 0 , so we find:

$$
a_{k}= \begin{cases}1 & \text { for } k=0, k= \pm 3, k \pm 5 \\ 0 & \text { for all other } k\end{cases}
$$

Problem 3: LTI-systems

(a) First we consider the system $y_{0}[n]=x[n-2]+x[2-n]$. Since $y_{0}[0]=x[-2]+x[2]$, it is clearly not causal. It is also not time invariant, since $y_{1}[n-d]=x[n-d-2]+x[2-n+d] \neq x[n-d-2]+x[2-n-d]$. The system is linear, which is easy to prove:

$$
\begin{aligned}
& (a \cdot x+b \cdot y)[n-2]+(a \cdot x+b \cdot y)[2-n] \\
= & a \cdot x[n-2]+b \cdot y[n-2]+a \cdot x[2-n]+b \cdot y[2-n] \\
= & a(x[n-2]+x[2-n])+b(y[n-2]+y[2-n])
\end{aligned}
$$

The system $y_{1}[n]=x[n-2]-8 x[n-2]$ is a standard FIR filter. Hence, it is causal, linear, and time invariant.
(b) Clearly, $x[n]=u[n]-u[n-4]=\delta[n]+\delta[n-1]+\delta[n-2]+\delta[n-4]=[1,1,1,1]$. The output is obtained by convolving this with $h=[1,2,3,1]$, so we find

$$
\begin{aligned}
y[n] & =[1,1,1,1] *[1,2,3,1]=[1,3,6,7,6,4,1] \\
& =\delta[n]+3 \delta[n-1]+6 \delta[n-2]+7 \delta[n-3]+6 \delta[n-4]+4 \delta[n-5]+\delta[n-6]
\end{aligned}
$$

(c) Let us assume that the system is a FIR. This means that there is a kernel h for which $|h|=|y|-|x|+1=$ $7-5+1=3$. So, let $h=[a, b, c]$ and compute the convolution $h * x$:

a	b	c				
3	1	4	1	5		
$3 a$	$3 b$	$3 c$				
	a	b	c			
		$4 a$	$4 b$	$4 c$		
			a	b	c	
				$5 a$	$5 b$	$5 c$
6	2	5	1	6	-1	-5

From the first column, we conclude $a=2$. From the last column, we conclude $c=-1$. Next, we use $3 b+a=2$, to deduce that $b=0$. Checking yields $3 c+b+4 a=-3+0+8=5$, $c+4 b+a=--1+0+2=1,4 c+b+5 a=-4+0+10=6$, and $c+5 b=-1+0=-1$. So, we found $h=[2,0,-1]$ and the filter is indeed a FIR filter.
(d) Just like in part (c), assume that $h=[a, b, c]$ and compute the convolution:

a	b	c				
1	2	3	2	1		
a	b	c				
	$2 a$	$2 b$	$2 c$			
		$3 a$	$3 b$	$3 c$		
			$2 a$	$2 b$	$2 c$	
				a	b	c
-1	0	2	2	0	0	-1

Clearly, from the first and the last column, we conclude $a=c=-1$. From $b+2 a=0$, we conclude $b=2$. However, this contradicts $c+2 b+3 a=-1+4-3=0 \neq 2$. Hence, the filter is not a FIR filter.
(e) We can obtain the unit pulse $\delta[n]$ by adding the first two given inputs, and subtract 3 times the 3rd input shifted by 2 samples. So, we can get the output of the unit pulse as follows: $y[n]=[12,10,10,24,10]+$ $[-8,-8,2,6,2]-3[0,0,4,10,4]=[4,2,0,0,0]$
We conclude $h=[4,2]=4 \delta[n]+2 \delta[n-1]$.

Problem 4: frequency responses and z-transforms

(a) For the first order difference, we have $h=[1,-1]$. Hence, $H(z)=1-z^{-1}$ and $H\left(e^{j \hat{\omega}}\right)=1-e^{-j \hat{\omega}}$.
(b) We rewrite the frequency response in normal-form using Euler's formula:

$$
H_{0}\left(e^{j \hat{\omega}}\right)=e^{-j \hat{\omega}}(3-2 \cos \hat{\omega})=e^{-j \hat{\omega}}\left(3-e^{j \hat{\omega}}-e^{-j \hat{\omega}}\right)=3 e^{-j \hat{\omega}}-1-e^{-j 2 \hat{\omega}}=-1+3 e^{-j \hat{\omega}}-e^{-j 2 \hat{\omega}}
$$

So, we find $h=[-1,3,-1]$ and $y[n]=-x[n]+3 x[n-1]-x[n-2]$. Since $3-2 \cos \hat{\omega}>0$, no frequencies are completely nulled by this system.
(c) For the DC -component, we find the gain $3-2 \cos 0=1$, so the DC -component is not changed. For the frequency $\hat{\omega}=\pi / 3$ we find the gain $3-2 \cos (\pi / 3)=2$ and the phase change $-\pi / 3$. For the frequency $\hat{\omega}=\pi / 4$ we find the gain $3-2 \cos (\pi / 4)=3-\sqrt{2}$ and the phase change $-\pi / 4$. So, we find the output $y[n]=5+6 \cos \left(\frac{(n-1) \pi}{3}\right)+(6-2 \sqrt{2}) \sin \left(\frac{(n-1) \pi}{4}\right)=5+6 \cos \left(\frac{(n-1) \pi}{3}\right)+(6-2 \sqrt{2}) \cos \left(\frac{(n-3) \pi}{4}\right)$.
(d) A DC-component is removed by the first order difference. We can remove a frequency $\hat{\omega}$ by a system with system function $\left(1-e^{j \hat{\omega}} z^{-1}\right)\left(1-e^{-j \hat{\omega}} z^{-1}\right)=1-2 \cos (\hat{\omega}) z^{-1}+z^{-2}$. A first order difference will remove the DC -term. So, the filter asked for has the impulse response $[1,-1] *[1,-2 \cos (5 \pi / 6), 1]=$ $[1,-1] *[1, \sqrt{3}, 1]=[1, \sqrt{3}-1,1-\sqrt{3},-1]$. Its difference equation and system function are:

$$
\begin{aligned}
y_{1}[n] & =x[n]+(\sqrt{3}-1) x[n-1]+(1-\sqrt{3}) x[n-2]-x[n-3] \\
H_{1}(z) & =1+(\sqrt{3}-1) z^{-1}+(1-\sqrt{3}) z^{-2}-z^{-3}
\end{aligned}
$$

(e) Clearly, F_{2} is a 12 points-averager. Since 12 is 4×3 and 2×6, this means that the cosine terms are completely nulled. The DC-component remains, so the output is simply $y[n]=5$.

